Discrete Sturm–Liouville problem with Two-Point Nonlocal Boundary Condition and Natural Approximation of a Derivative in Boundary Condition

K. Bingelė and A.Štikonas

Vilnius Tech University, Vilnius, LITHUANIA Vilnius University, Vilnius, LITHUANIA

Department of Mathematical Modelling Seminar April 29, 2025

K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition

$$-u'' = \lambda u, \quad t \in (0,1),$$
 (1)

with Dirichlet BC or the natural BC:

- (Case d) u(0) = 0, (2a) (Case n) u'(0) = 0, (2b)
- and two-point NBC: 1
 - (Case 1) $u(1) = \gamma u(\xi),$ (3a)
 - (Case 2) $u'(1) = \gamma u'(\xi),$ (3b)
 - (Case 3) $u(1) = \gamma u'(\xi),$ (3c)
 - (Case 4) $u'(1) = \gamma u(\xi),$ (3d)

¹S. Pečiulytė, PhD thesis

Natural Approximation of a Derivative in Boundary Condition

< 回 > < 三 > < 三

The general solution of this equation $-u'' = \lambda u$, $t \in (0, 1)$ is

$$u(t) = C_1 \cos(\pi q t) + C_2 \frac{\sin(\pi q t)}{\pi q}, \quad \lambda = \lambda(q) = (\pi q)^2.$$
 (4)

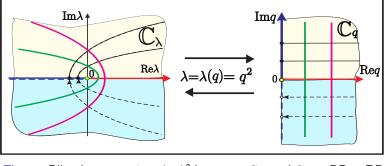


Figure: Bijective map: $\lambda = (\pi q)^2$ between \mathbb{C}_{λ} and \mathbb{C}_q ; \bullet -BP, \bullet -RP.

K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

$$\frac{U_{j-1} - 2U_j + U_{j+1}}{h^2} + \lambda U_j = 0, \quad j = \overline{1, n-1}, U_0 = 0, \quad (5)$$

$$U_0 = 0,$$
 $(u(0) = 0)$ (6a)

$$U_0 = U_1, \qquad (u'(0) = 0).$$
 (6b)

$$U_n = \gamma U_m,$$
 $(u(1) = \gamma u(\xi))$ (7a)

$$\frac{U_n - U_{n-1}}{h} = \gamma \frac{U_{m+1} - U_{m-1}}{2h}, \qquad (u'(1) = \gamma u'(\xi)), \tag{7b}$$

$$U_n = \gamma \frac{U_{m+1} - U_{m-1}}{2h}, \qquad (u(1) = \gamma u'(\xi)), \qquad (7c)$$

$$\frac{U_n - U_{n-1}}{h} = \gamma U_m, \qquad (u'(1) = \gamma u(\xi)).$$
(7d)

and h = 1/n, $\xi = mh = m/n$. The truncation error is O(h).

ヘロン 人間 とくほ とくほ とう

ъ

۲

۲

For dSLP (5)–(7a,c) we have meromorphic functions

$$U_{0} = 0 \quad \text{and } U_{n} = \gamma U_{m} \quad \text{or} \quad U_{n} = \gamma \frac{U_{m+1} - U_{m-1}}{2h}$$
$$\gamma_{c}(q) := \frac{\sin(\pi q)}{\sin(\pi q\xi)}, \quad 0 < m < n \tag{8a}$$
$$\gamma_{c}(q) := \frac{\sin(\pi q)}{\cos(\pi q\xi)} \cdot \frac{h}{\sin(\pi qh)}, \quad 0 \le m < n. \tag{8b}$$

$$U_0 = U_1$$
 and $U_n = \gamma U_m$ or $U_n = \gamma \frac{U_{m+1} - U_{m-1}}{2h}$

$$\gamma_{c}(q) := \frac{\cos(\pi q(1 - h/2))}{\cos(\pi q(\xi - h/2))}, \quad 0 < m < n$$
(9a)
$$\gamma_{c}(q) := -\frac{\cos(\pi q(1 - h/2))}{\sin(\pi q(\xi - h/2))} \cdot \frac{h}{\sin(\pi qh)}, \quad 0 \le m < n,$$
(9b)

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Discrete Sturm-Liouville Problems with u(0) = 0 and u'(0) = 0.

$$\frac{U_{j-1} - 2U_j + U_{j+1}}{h^2} + \lambda U_j = (\delta^2 U)_j + \lambda U_j = 0,$$
(10)
$$(\delta^2 U)_j := \frac{(\delta U)_{j+1/2} - (\delta U)_{j-1/2}}{h_{j+1/2}} \quad (\delta U)_{j+1/2} := \frac{U_{j+1} - U_j}{h}$$

$$(\delta U)_{-1/2} = 0,$$
 $(u'(0) = 0)$ (11a)
 $(\delta U)_{n+1/2} = 0,$ $(u'(1) = 0).$ (11b)

 $j = \overline{1, n-1}$ and h = 1/n, $\xi = mh = m/n$. The conditions u'(0) = 0 and u'(1) = 0 truncation error is $\mathcal{O}(h^2)$. Operator $(\delta^2 U)$ can be extended to point t_0 and t_n

$$(\delta^{2}U)_{0} := \frac{(\delta U)_{1/2} - (\delta U)_{-1/2}}{h/2} = \frac{(\delta U)_{1/2}}{h/2} = -\lambda U_{0} \quad (12a)$$
$$(\delta^{2}U)_{n} := \frac{(\delta U)_{n+1/2} - (\delta U)_{n-1/2}}{h/2} = \frac{(\delta U)_{n-1/2}}{h/2} = -\lambda U_{n} \quad (12a)$$

Sturm-Liouville Problems with Two-Point NBC

$$\frac{U_{j+1} - 2U_j + U_{j-1}}{h^2} = \lambda U_j \text{ or }$$
(13)

$$U_{j+1} - 2zU_j + U_{j-1} = 0, \quad z = 1 - \lambda h^2/2$$
 (14)

and the general solution of this discrete equation have expression ² $U = C T(x) + C \tilde{T}(x)$

$$U_j = C_1 T_j(z) + C_2 T_{j-1}(z), \quad j \in \mathbb{Z}$$
 (15)

where

$$T_j(z) = \frac{(z + \sqrt{z^2 - 1})^j + (z - \sqrt{z^2 - 1})^j}{2}, \quad j \in \mathbb{Z},$$

are the Chebyshev polynomial of the first kind of degree j in z,

$$\widetilde{T}_{j}(z) = \frac{(z + \sqrt{z^{2} - 1})^{j+1} - (z - \sqrt{z^{2} - 1})^{j+1}}{2\sqrt{z^{2} - 1}}, \quad j \in \mathbb{Z},$$

are the Chebyshev polynomial of the second kind of degree j in

². ²1989 A.A. Samarskii and E.S. Nikolaev "Numerical Methods for Grid Equations"

$$U_{j+1} - (\omega + \omega^{-1})U_j + U_{j-1} = 0$$
, where $z = z(\omega) := \frac{\omega + \omega^{-1}}{2}$ (16)

and the general solution of this discrete equation is

$$U_j = C_1 W_j(\omega) + C_2 \widetilde{W}_j(\omega), \quad j \in \mathbb{Z},$$
(17)

where

$$W_j(\omega) = rac{\omega^j + \omega^{-j}}{2}, \quad \widetilde{W}_j(\omega) = rac{\omega^j - \omega^{-j}}{\omega - \omega^{-1}}, \quad j \in \mathbb{Z}.$$

The conformal map

$$\omega^h \colon \mathbb{C}_q \to \mathbb{C}_{\omega^*}, \quad \omega = \omega^h(q) := e^{\imath \pi q h},$$

is bijection. Using maps λ_h and ω^h we construct the bijection between complex plane \mathbb{C}_{λ} and domain \mathbb{C}_q :

$$\lambda = \lambda_h(q) := \frac{2}{h^2} \left(1 - \frac{e^{i\pi qh} + e^{-i\pi qh}}{2} \right) = \frac{4}{h^2} \sin^2 \frac{\pi qh}{2}.$$
K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition

The equation (10) can be rewritten in form

$$U_{j+1} - 2\cos(\pi qh)U_j + U_{j-1} = 0, \quad q \in \mathbb{C}_q^h,$$
 (19)

and the general solution of this discrete equation is

$$U_j = C_1 \cos(\pi q t_j) + C_2 \frac{\sin(\pi q t_j)}{\sin(\pi q h)}, \quad \text{where } t_j = jh, \ j \in \mathbb{Z}.$$
 (20)

Let us approximate natural condition u'(0) = 0 as ³

$$(\delta U)_{1/2} = -h_{1/2}\lambda U_0 \tag{21}$$

and is natural condition for equation (19)

³1989 A.A. Samarskii and E.S. Nikolaev "Numerical Methods for Grid Equations"

$$U_{j+1} - 2\cos(\pi qh)U_j + U_{j-1} = 0, \qquad \lambda = \frac{4}{h^2}\sin^2(\frac{\pi qh}{2})$$

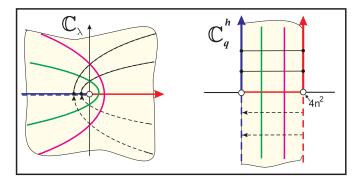


Figure: Bijective mapping $\lambda = \frac{4}{h^2} \sin^2(\frac{\pi q h}{2})$ between \mathbb{C}_q^h and \mathbb{C}_λ .

K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition

NIUS.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

We define grid operators:

$$\delta^{+} \colon H(\overline{\omega}^{h}) \to H(\omega^{h} \cup \{0\}), \quad (\delta^{+}U)_{j} := \frac{U_{j+1} - \cos(\pi qh)U_{j}}{h},$$

$$\delta^{-} \colon H(\overline{\omega}^{h}) \to H(\omega^{h} \cup \{n\}), \quad (\delta^{-}U)_{j} := \frac{\cos(\pi qh)U_{j} - U_{j-1}}{h}.$$

On the grid ω^h we have

$$(\delta^+ U)_j = (\delta^- U)_j = ((\delta^+ U)_j + (\delta^- U)_j)/2 = \frac{U_{j+1} - U_{j-1}}{2h} =: (\bar{\delta}U)_j.$$

If $(\bar{\delta}U)_0 := (\delta^+ U)_0$, $(\bar{\delta}U)_n := (\delta^- U)_n$, then we have natural approximation $(\bar{\delta}U)_i$ of derivative $u'(t_i)$ on the grid $\overline{\omega}^h$.

★ E > ★ E

$$-\delta^2 U = \lambda U, \quad t \in \omega^h, \tag{22}$$

with Dirichlet BC or the natural BC:

- (Case *d*) $U_0 = 0,$ (23a)
- (Case *n*) $(\bar{\delta}U)_0 = 0,$ (23b)

and two-point NBC:

- (Case 1) $U_n = \gamma U_m$, (24a)
- (Case 2) $(\bar{\delta}U)_n = \gamma(\bar{\delta}U)_m,$ (24b)
- (Case 3) $U_n = \gamma(\bar{\delta}U)_m,$ (24c)
- (Case 4) $(\bar{\delta}U)_n = \gamma U_m,$ (24d)

where $0 \le m < n, \gamma \in \mathbb{R}$, $h = 1/n, \xi = mh = m/n$. The general solution of discrete equation (22) is

$$U_j = C_1 \cos(\pi q t_j) + C_2 \frac{\sin(\pi q t_j)}{\sin(\pi q h)}, \quad \text{where } t_j = jh, \ j \in \mathbb{Z}.$$

For dSLP (22)–(24) Constant Eigenvalues are equal to $\lambda_j = \lambda^h(c_j)$, where

$$c_j = Nj,$$
 $j \in \mathcal{J}_{\xi} := \{j : j = \overline{1, K-1}\},$ (d1)

$$c_j = N(j - 1/2), \quad j \in \mathcal{J}_{\xi} := \{j : j = \overline{1, \varkappa K}\}, \quad (d2-4, n1, n3-4)$$

$$c_j = Nj, \qquad j \in \mathcal{J}_{\xi} := \{j : j = \overline{0, K}\}, \quad (n2)$$

and

$$\begin{split} n_{ce} &= K-1, \quad l_j = Nj, & k_j = Mj, \\ n_{ce} &= \varkappa K, & l_j = Nj - (N-1)/2, \quad k_j = Mj - (M-1)/2, \\ & (d2,n1) \end{split}$$

$$\begin{array}{ll} n_{ce} = K+1, & l_j = Nj, & k_j = Mj. & (n2) \\ n_{ce} = \varkappa K, & l_j = N(j-1/2), & k_j = Mj-(M-1)/2, & (d3) \\ n_{ce} = \varkappa K, & l_j = Nj-(N-1)/2, & k_j = M(j-1/2), & (d4) \\ n_{ce} = \varkappa K, & l_j = Nj-(N-1)/2, & k_j = Mj, & (n3) \\ n_{ce} = \varkappa K, & l_j = Nj-(N/2-1), & k_j = Mj-(M-1)/2, & (n3) \\ \end{array}$$

For dSLP (22)–(24) we have meromorphic functions

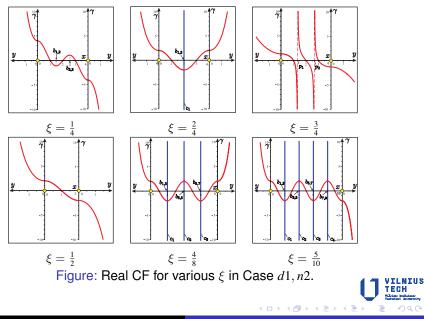
$$\begin{split} \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = \frac{\sin(\pi q)}{\sin(\pi q\xi)}, \quad 0 < m < n, \quad (d1,n2) \\ \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = \frac{\cos(\pi q)}{\cos(\pi q\xi)}, \quad 0 \le m < n. \quad (d2,n1) \\ \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = \frac{\sin(\pi q)}{\cos(\pi q\xi)} \cdot \frac{h}{\sin(\pi qh)}, \quad 0 \le m < n, \quad (d3) \\ \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = \frac{\cos(\pi q)}{\sin(\pi q\xi)} \cdot \frac{\sin(\pi qh)}{h}, \quad 0 < m < n, \quad (d4) \\ \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = -\frac{\cos(\pi q)}{\sin(\pi q\xi)} \cdot \frac{h}{\sin(\pi qh)}, \quad 0 < m < n, \quad (n3) \\ \gamma_{c}(q) &:= \frac{Z^{h}(q)}{P_{\xi}^{h}(q)} = -\frac{\sin(\pi q)}{\cos(\pi q\xi)} \cdot \frac{\sin(\pi qh)}{h}, \quad 0 \le m < n, \quad (n3) \end{split}$$

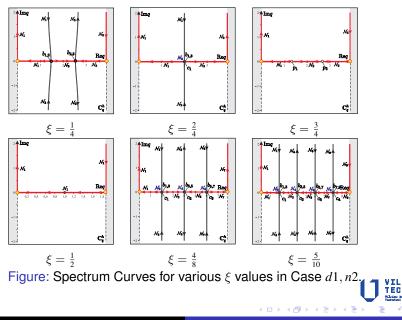
K. Bingelė, April 29, 2025 Natural Approximation of a Derivative in Boundary Condition

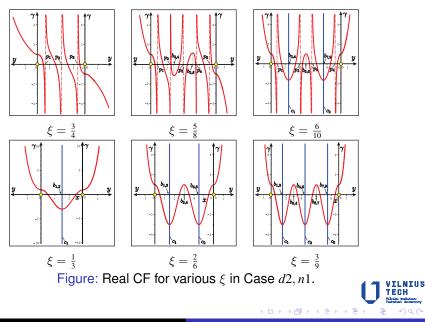
(A) (E) (A) (E)

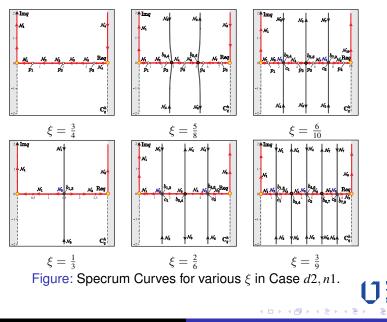
< 🗇 🕨

э

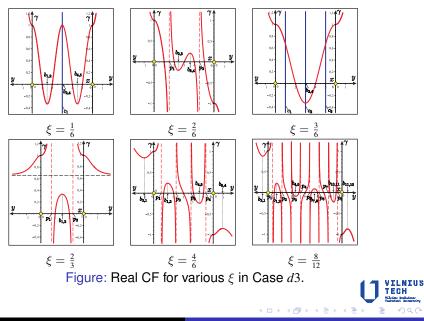


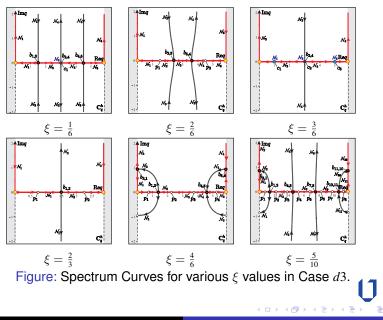




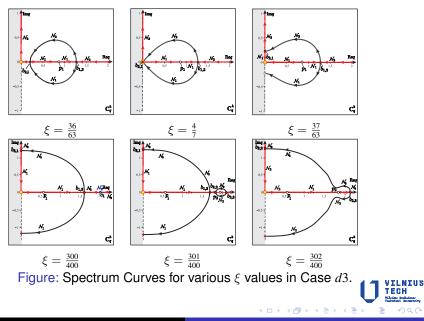


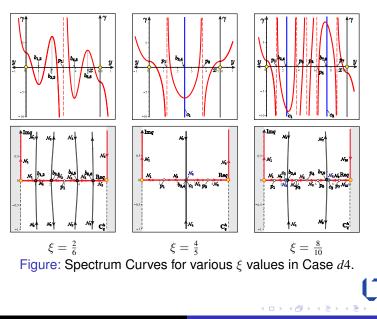
NIUS



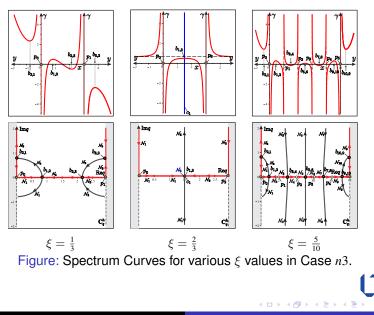


ITUS



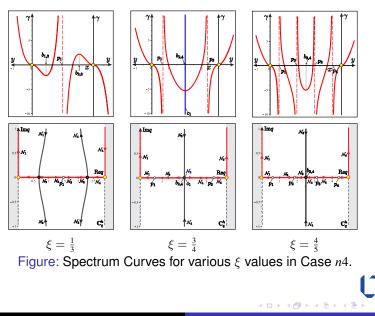


IIUS



LNIUS

ъ



LNIUS

- In case d1–2, n1–2 if n m = 1 we have only real eigenvalues points.
- In cases d1,n2 the eigenvalue $\lambda = 0$ exist only if $\gamma = \frac{1}{\xi}$ and $\lambda = 4n^2$ exist only if $\gamma = (-1)^{n-m} \frac{1}{\xi}$.
- In cases d2,n1 the eigenvalue $\lambda = 0$ exist only if $\gamma = 1$ and $\lambda = 4n^2$ exist only if $\gamma = (-1)^{n-m}$.
- In cases d3 the eigenvalue $\lambda = 0$ exist only if $\gamma = 1$ and $\lambda = 4n^2$ exist only if $\gamma = (-1)^{n-m+1}$.
- In case d4 the eigenvalue $\lambda = 0$ exist only if $\gamma = \frac{1}{\xi}$ and $\lambda = 4n^2$ exist only if $\gamma = (-1)^{n-m+1} \frac{1}{\xi}$.
- In case n3 the eigenvalues $\lambda = 0$ and $\lambda = 4n^2$ do not exist.
- In case n4 the eigenvalues $\lambda = 0$ and $\lambda = 4n^2$ exist if $\gamma = 0$.

イロト イ理ト イヨト イヨト